purely inseparable - определение. Что такое purely inseparable
DICLIB.COM
Языковые инструменты на ИИ
Введите слово или словосочетание на любом языке 👆
Язык:     

Перевод и анализ слов искусственным интеллектом

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое purely inseparable - определение


Purely inseparable extension         
In algebra, a purely inseparable extension of fields is an extension k ⊆ K of fields of characteristic p > 0 such that every element of K is a root of an equation of the form xq = a, with q a power of p and a in k. Purely inseparable extensions are sometimes called radicial extensions, which should not be confused with the similar-sounding but more general notion of radical extensions.
Computably inseparable         
IN COMPUTABILITY THEORY, PAIRS OF SETS OF NATURAL NUMBERS THAT CANNOT BE "SEPARATED" WITH A RECURSIVE SET
Effectively separable; Effectively separable set; Effectively separable sets; Effectively inseparable; Effectively inseparable sets; Recursively separable sets; Recursively separable; Recursively inseparable; Recursive inseparability; Recursively inseparable sets
In computability theory, two disjoint sets of natural numbers are called computably inseparable or recursively inseparable if they cannot be "separated" with a computable set.Monk 1976, p.
Purely functional programming         
PROGRAMMING PARADIGM THAT TREATS ALL COMPUTATION AS THE EVALUATION OF MATHEMATICAL FUNCTIONS
Pure functional language; Functional purity; Purely functional language; Purely functional programming language; Pure functional programming; Pure functional
In computer science, purely functional programming usually designates a programming paradigm—a style of building the structure and elements of computer programs—that treats all computation as the evaluation of mathematical functions.